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We develop a method to use disaggregate data to conduct causal inference in

macroeconomics. The approach permits one to infer the aggregate effect of a macro

treatment using regional outcome data and a valid instrument. We estimate a macro

effect without (sine) the aggregation (aggregatio) of the outcome variable. We exploit

cross-equation parameter restrictions to increase precision relative to traditional,

aggregate series estimates and provide a method to assess robustness to departures

from these restrictions. We illustrate our method via estimating the jobs effect of oil

price changes using regional manufacturing employment data and an aggregate oil

supply shock.

1 Introduction

This paper presents a new method for using disaggregate data to conduct causal

inference about a macroeconomic treatment effect. With a properly constructed sta-

tistical model, we can conduct estimation of an aggregate effect without aggregating

the outcome variable. By exploiting the information in the disaggregate panel, our
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method can dramatically improve the precision of estimates relative to using solely

aggregate data.

As a starting point, consider the problem of estimating the effect of an aggregate

variable, Xt, on an aggregate outcome, Yt, via an instrumental variable (IV) strategy.

The outcome depends on the treatment according to a linear relationship given by

Yt = BXt + νt (1)

where t represents time and νt is an error term.1 Identification of B relies on an

instrument, Zt, that a researcher can defensibly assume is orthogonal to νt.

Suppose Yt is the sum of some regional, sectoral or other disaggregate series.2

That is, we have series for N mutually exclusive, disaggregate groups Yi,t, and

Yt =
∑N

i=1 Yi,t. This allows the possibility that disaggregate data may be infor-

mative about the aggregate effect and motivates our method aimed at utilizing this

information.

Group-level data are very likely to be helpful in learning about B when the group-

level effect of X is the same across all groups. In this case, a group-level analog of

(1) with common parameters is well-specified:

Yi,t =
B

N
Xt + ui,t. (2)

Summing (2) across i for each t reproduces the aggregate regression (1). There

could be large efficiency gains in estimating (2) relative to (1), with the caveat that

its common parameter assumption may be too restrictive. There is a fundamental

tension between a potential need for group-level treatment heterogeneity and a po-

tentially large efficiency gain from imposing (valid) common parameter restrictions

across groups. Our method is motivated by the concern that in many applications a

common parameter assumption may be too restrictive, so a method to systematically

1Here assume we have concentrated out any conditioning information such as lags of the outcome
or other variables.

2Appendix A provides 11 examples of publicly available U.S. data sets that satisfy this require-
ment and have been used (extensively in most cases) in macroeconomic analyses.
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examine departures from it is useful.

Consider a group-level analog of (1) with parameter heterogeneity:

Yi,t = βiXt + νi,t. (3)

We consider an aggregate effect of interest that is a weighted sum of the βi. With a

given set of weights, {si}, our aggregate effect is B =
∑

i siβi. There may be large

efficiency gains from exploiting restrictions on sets of common parameters in the βi.

We estimate B, the macro effect of an aggregate treatment, using the group-level

responses to the treatment via GMM with group-level moment conditions and cross-

group parameter restrictions. Furthermore, we provide a simple way to examine

robustness to the common-parameter restrictions underlying our potential efficiency

gains.

Our approach complements a very large body of existing, related work with dis-

aggregate data which is of two types. First, much of this literature estimates relative

or local effects, rather than macro effects, by regressing regional outcomes on regional

treatments (e.g., Chodorow-Reich et al. (2012), Clemens and Miran (2012) and Mian,

et.al. (2013)). In addition, a similarly large body of work estimates regional impacts

of aggregate treatments but neither imposes group-level moment conditions nor rel-

evant parameter restrictions (e.g Carlino and DeFina (1998), Mumtaz, et.al. (2018)

and Owyang and Zubairy (2013)).

For simplicity of exposition, we assume that the same aggregate instrument Zt
is valid and strong at the group level so that under standard regularity conditions

GMM estimation using a stacked set of the group-level moments E(Ztνi,t) = 0 will

generate reliable confidence intervals. The approach is straightforward to apply with

group-specific instruments, weak instrument robust estimators, nonlinear models or

other criterion functions.

Our method lets the researcher decide how much parameter flexibility to allow

across groups. A wide variety of parameter restrictions can be examined; the number

of alternative restrictions is limited only by computational feasibility. There are many

reasons researchers may want to examine the possibility of cross-group heterogeneity
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in treatment effects. Groups of states for example may have different industrial

composition or labor market conditions that underlie treatment effect heterogeneity.

To illustrate our method, we examine restrictions that allow a small number of

groups, K, to have differing group-level treatment slopes, while the rest share a

common value. That is, we restrict at most K groups to have individual βi. Thus

the most extreme restriction in this illustration, with K = 0, is that all groups’ βi are

the same. As K increases the sets of restrictions become more flexible. In Appendix

B, we estimate the model using a different set of restrictions: common coefficients

within clusters of state groups.

We begin with estimating the model under each possible restriction. In our

example, each restriction has K groups with individual βi and the remainder with

a common value. For each of these N choose K parameterizations, we obtain a

confidence interval (CI) for B. We take the union of these CIs to obtain an interval

estimate for B that is conservative. This basic approach is closely related to that

followed by Conley, Hansen and Rossi (2012) in the context of potential deviations

from a IV exclusion restriction and Hansen, Kozbur and Misra (2021) in a high-

dimensional model selection context.

We apply our method to estimate the response of manufacturing employment

to an exogenous oil price shock. We study an oil price shock because it is viewed

as a highly plausible “supply” factor that varies in part for reasons that are exoge-

nous to the business cycle. Our IV approach utilizes the Känzig (2021) monthly

oil supply news series as an instrument for world oil price changes. Känzig (2021)

uses short-run changes in oil futures prices around a tight window of OPEC an-

nouncements to construct an instrument that is correlated with exogenous changes

in oil prices. We study manufacturing employment because U.S. manufacturing is

highly oil-dependent and the sector’s monthly employment data are available at the

regional level. In the remainder of the paper, all references tp employment should

be understood to mean manufacturing employment. We divide U.S. states into nine

disjoint groups, each with roughly the same group employment totals.3

3The number of groups is limited by the panel’s time dimension and our need for a precise
estimate of the moment variance matrix.
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Using the standard aggregative approach yields point estimates that suggest a

contractionary oil supply shock reduces employment but the effect is imprecisely

estimated. We estimate the aggregate effect using our panel-based approach for

K = 0 through K = 3. For each of these values, the midpoint of the CI corresponds

to a twenty percent increase in the real price of oil reducing employment by about

one percent. For each value of K, the corresponding CI is substantially smaller than

that from the aggregative approach. For example, the K = 1 CI is (−2.5, 0.40) and

aggregate-based analogue is (−4.8, 0.26). This implies a CI shrinkage of 42 percent.

2 Related Research

Our paper complements the existing literature on using disaggregate data to answer

macroeconomic questions. A first generation used disaggregate (e.g., regional or

sectoral) differences in exposure to a macro shock and the resulting differences in

outcomes to identify causal effects.4

However, several authors have noted that, with cross-regional spillovers, these

local (or relative) effect estimates are potentially biased estimates of the aggregate

effects of a policy (e.g., Cochrane (2012), Nakamura and Steinsson (2014) and Ramey

(2011)). One advance (which speaks to this issue) has been to relate a particular local

effect empirical estimate to an analogous partial equilibrium object from a structural

economic model (e.g., Kaplan and Violante (2014) and Berger, et.al. (2017)). Relat-

edly, several papers have used those local estimates to help calibrate parameters from

a fully-specified equilibrium macro models (e.g., Beraja, Hurst and Ospina (2019),

Dupor, et.al. (2020) and Nakamura and Steinsson (2014)).5

In contrast, we use disaggregate data to answer macro questions without taking

a stand on the specific preferences, technology, endowment and market mechanisms

that underlie the data generating process used to approximate an actual economy.

4For example, Chodorow-Reich (2020) cites 50 papers published between 2012 and 2018 in top
economics journals that attempt to infer causal macro impact using cross-regional variation in
exogenous shocks or policy changes and regional outcomes. For these papers, the statistical unit of
observation is a region.

5See also Guren, et.al. (2019) and Wolf (2019) for related approaches.
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Even though we use disaggregate outcome data, our basic identification is based on

time series variation.

3 The Econometric Model

We present our method in a case matching our application where the researcher has

balanced panel data on a group-level outcome Yi,t, with T periods and N groups.6

In addition, the researcher is interested a treatment effect upon the long difference of

Yi,t denoted as: yδi,t+δ = Yi,t+δ−Yi,t−1. The analogous aggregate treatment is denoted

xδt+δ and zt denotes the aggregate instrument. We consider a (slightly) generalized

version of an aggregate long difference by taking a weighted sum, using the notation

yδt+δ ≡
∑

i siy
δ
i,t+δ where the si are weights.

We work with a local projection estimation equation:

yδi,t+δ = γi + βix
δ
t+δ + εδi,t+δ (4)

where γi is a group fixed effect. The parameter of interest is the effect of xδt+δ on the

aggregate outcome yδt+δ, denoted by B, with B ≡
∑

j sjβj.

The paramter B could be estimated via an aggregate regression. Taking an si

weighted sum of (4) in the cross section yields an aggregate regression equation:

yδt+δ = γ +Bxδt+δ + εδt+δ (5)

The typical approach is to estimate equation (5) via instrumental variables. We aim

to improve efficiency by using our panel data to estimate (4).

Our IV moment conditions are

E
(
ztε

δ
i,t+δ

)
= 0 (6)

for i = 1, . . . , N . Our identification assumption is that, at the group-level, the error

term of the group-level equation is uncorrelated with the aggregate instrument zt.

6The method is straightfoward to apply to unbalanced panels.
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We first estimate a set of models, with each imposing a restriction upon the

βi and estimating parameters via GMM using moment condition (6). We consider

R total restrictions and index each restriction using r. We also refer to the N by

one parameter vector collecting all βi, subject to r as βr with its {si} weighted

sum denoted Br. For each r we obtain a CI for Br, CI(Br), implied by the usual,

strong-instrument large-sample distribution approximation for the GMM estimator

of Br. We want our method to be flexible enough to handle the possibility that a

restriction r may be at odds with the data and result in nonsense estimates and

CI. To immunize our procedure from such implausible restrictions, we construct a

‘mixture’ CI that uses a model specification test for each r. We use a standard

GMM over-identification test statistic under the restriction r, which we denote Jr. If

a model is rejected by the over-identification test, we replace its standard CI with an

empty set. Our mixture CI will be denoted C̃I(Br). For example with a 1% critical

value for the over-identification test, to get a 90% C̃I(Br) we use:

90% C̃I(Br) =

{
91% CI(Br) if Jr < 1% critical value

∅ else
(7)

Thus, we replace the estimated standard 91% CI(Br) with an empty set if the

model is rejected by the 1% level specification test. Under the null of a correctly

specified model, our specification test rejects 1% of the time and our resulting 90%

C̃I(Br) will of course not cover the true B because it is empty. The worst case

scenario from a coverage point of view is that every time the specification test rejects,

the 91% CI(Br) would have covered B. Therefore, our mixture 90% C̃I(Br) will still

have at least 90% coverage.

Finally, to obtain a conservative CI for B we take the union of the C̃I(Br) over

all r ∈ R. Our method can be implemented with any set of restrictions R that is

small enough to be computationally feasible. We anticipate researchers will want to

examine results for more than one set of restrictions, e.g. for a set of values of K.

Appendix C restates the complete method in step-by-step “cookbook” form. In

the next section, we execute the procedure using data on oil supply shocks and

employment.
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4 Application: Oil Price News Shocks

We utilize monthly US state-level data from January 1991 to January 2017.7 For

dimension reduction, we define groups to be collections of states, with each state

belonging to one group. We aggregate employment within group and Yi,t is taken to

be log employment in group-month (i, t), so yδi,t+δ is the long difference in the log of

group-level employment. Our treatment variable xδt+δ is the analogous long difference

in the log real price of oil.8 We scale xδt+δ such that a unit treatment corresponds

to a 20 percent increase in the real price of oil between t − 1 and t + δ. Because

of the delayed effect of oil shocks on economic activity found in existing research,

we investigate 18 and 24 month horizons for our local projection estimation (i.e.,

δ = 17, 23).

We use nine groups, chosen so that the groups have similar shares of employment,

given in Table 1. In all but one case, the groups are geographically contiguous.9 We

collapse the state-level data into groups because we want to ensure we have reliable

covariance matrix estimates, which will be used to construct the efficient GMM

weighting matrix as well to construct confidence intervals.

We use the Känzig (2021) oil shock series as our instrument. Känzig (2021) uses

variation in oil futures prices around a tight window of OPEC announcements to

construct an instrument. Although oil prices and oil price futures are in general

endogenous to the world macroeconomy, world economy factors should already be

priced into oil futures and are plausibly unchanged within the announcement window.

Känzig (2021) estimates that a contractionary shock immediately increases the oil

spot price, reduces oil production gradually and has a delayed, negative effect on

industrial production.

Our instrument series, zt, is constructed as the set of positive (i.e., contractionary)

values of the Känzig (2021) oil supply news shock. All non-negative values are set

7Our state-level employment data are from the Bureau of Labor Statistics.
8Oil price data are from the U.S. Energy Information Administration. The oil price is trans-

formed from a nominal to real variable using the CPI.
9New York is a single group and splits a set of northeastern states that together make up another

group, which include Vermont and Pennsylvania.
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Table 1: Classification of states into nine groups

Group Members
1 AL, FL, GA, MS, SC, TN
2 AZ, CO, ID, KS, MN, MT, ND, NE, NM, NV, OR, SD, UT, WA, WY
3 AR, LA, MO, OK, TX
4 CA
5 CT, MA, ME, NH, PA, RI, VT
6 DE, MD, NC, NJ, VA, WV
7 IA, IL, IN, WI
8 KY, MI, OH
9 NY

Notes: States are grouped in order to maintain similar shares of manufacturing employment

and also maintain geographic proximity within groups.

equal to zero in our application.10

We obtain efficient estimates via iterated GMM assuming second-moment inde-

pendence.11 We estimate the long-run covariance matrix of our moment conditions

via a Bartlett covariance matrix estimator that places non-zero weight on the sample

autocovariances at up to 20 month (for δ = 17) and 26 month (for δ = 23) leads and

lags.12

The parameter of interest, B, is the percentage change in national employment

in response to a twenty percent oil price increase. We estimate this parameter over

both the 18 month and 24 month horizon.

Our identification restriction—that the group-level error term is uncorrelated

with the oil supply shock—is somewhat stronger than the typical restriction that the

10We limit attention to contractionary supply shocks. Whereas contractionary supply shocks have
strong predictive power for oil price changes (at the horizons we consider and over our sample),
expansionary ones do not.

11We iterate on the GMM procedure until the absolute value of the change in J statistic across
one iteration is less than 10−3. Convergence is typically achieved after three iterations. Relative
to two-step GMM, using iterated GMM lessens the arbitrary dependence on the initial weighting
matrix.

12Our results are robust to using alternate Bartlett weights from 21 to 27 months (for δ = 17)
and 27 to 33 months (for δ = 23) leads and lags.
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Table 2: Aggregate and sine aggregatio confidence intervals for the employment effect
of a 20 percent increase in the real price of oil, 24 month horizon

Estimation Method Low CI High CI Midpt. CI rel length (%) Num Models
Aggregated data -3.85 0.32 -1.77
Sine aggregatio

K = 0 -1.71 0.13 -0.79 44 1
K = 1 -2.13 0.50 -0.81 63 9
K = 2 -2.68 0.96 -0.86 87 36
K = 3 -2.74 1.16 -0.79 93 84

Note: Dependent variable=24 month change in log employment. 90 percent CIs reported.

K=number of response coefficients allowed to vary across regions. For the K = 0 case, the

J-statistic and associated p-value for the over-identifying restriction are 7.5 and 0.50.

Table 3: Aggregate and sine aggregatio confidence intervals for the employment effect
of a 20 percent increase in the real price of oil, 18 month horizon

Estimation Method Low CI High CI Midpt. CI rel length (%) Num Models
Aggregated data -4.79 0.26 -2.26
Sine aggregatio

K = 0 -2.02 0.01 -1.01 40 1
K = 1 -2.53 0.40 -1.07 58 9
K = 2 -2.70 0.76 -0.97 69 36
K = 3 -3.10 0.96 -1.07 81 84

Note: Dependent variable=18 month change in log employment. 90 percent CIs reported.

K=number of response coefficients allowed to vary across regions. For the K = 0 case, the

J-statistic and associated p-value for the over-identifying restriction are 8.0 and 0.43.

aggregate error term is orthogonal to the supply shock. Simply put, our identification

assumption requires that the Känzig national-level identification carries over to the

group level.

Table 2 reports the effect on employment of a 20 percent increase in the real price

of oil at a 24 month horizon. It contains six columns: the estimation method (and

value of K), the two CI bounds, the midpoint of those bounds, the relative length

of CI and the number of models estimated.

The first row of estimates corresponds to the standard macro approach: a uni-

variate estimate using the fully aggregated data (i.e., equation (5)). The 90 percent
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CI equals (−3.9, 0.32) with a midpoint equal to -1.8. It indicates that the oil price

increase–driven by a contractionary news shock–has a lower bound of decreasing em-

ployment by 3.9 percent to an upper bound estimate of increasing employment by

0.3 percent. Notably, the effect is imprecisely estimated.13

The remaining rows contain the estimates using the panel outcome variable and

the sine aggregatio approach. Each row corresponds to a case of allowing K slopes to

differ, with the remaining slopes restricted to be identical. Note that the confidence

intervals often shrink dramatically relative to the estimate based on the standard

approach using aggregate data. Comparing results across values of K allows the

researcher to assess robustness to the associated parameter restrictions.

The midpoint of the CI (which in this case is also the point estimate) when K = 0

is -0.79, which is of the same sign but somewhat closer to zero than the aggregated-

data based estimate of -1.8. The entry for the “CI rel length (%)” column indicates

that the K = 0 sine aggregatio CI length is 44 percent of the aggregate estimate CI

length.14

The next row reports the K = 1 estimate. Here the reported CI is union of

nine models;15 each model corresponds to one of the nine groups being allowed to

have a distinct slope. The midpoint of this estimate equals -0.81, which is slightly

lower than the K = 0 case. As one might anticipate, the K = 1 CI expands slightly

relative to the common coefficients case and equals (−2.1, 0.50).

The final two rows report estimates for K equal 2 and 3 cases. For K = 2, we

13This estimate is nearly identical to that if we instead using a long difference in log aggregate
employment, denoted Y At+δ − Y At−1, as our outcome and estimated:

Y At+δ − Y At−1 = γA +BAxδt+δ + ηδt+δ (8)

This follows from the high quality of the first-order approximation for national employment growth
rate based on group-level employment growth rates, the correlation between yδt+δ and (Y At+δ−Y At−1)
us greater than .999.

14We also report the J test of overidentification restrictions, which embeds the coefficient restric-
tions on βi. The J-statistic equals 7.5 and has eight degrees of freedom. The associated p-value
equals 0.50. Thus, the data do not reject the model at conventional significant levels.

15As explained above, the method also requires that we “throw out” any model estimate and
associated CI with a sufficiently high J-statistics; however, none of the models are rejected by the
overidentifying restrictions in any specification in Table 2 and 3.
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estimate the model for all sets of restrictions where two groups have group-specific

slopes and the remaining seven have identical slopes. Likewise for K = 3, all sets of

three groups are allowed group-specific slopes. The CIs are of course wider than in

the K = 1 case and widen as K grows. However, both K = 2 and K = 3 CIs offer

less improvement relative to the aggregate series CI, equaling 87% and 93% of its

length, respectively. Comparing results across values of K allows the researcher to

assess robustness to the associated parameter restrictions.

Table 3 estimates the analog of Table 2 except we use the 18 month horizon.

The pattern for the CIs is very similar. The employment effect using the standard

aggregate approach is estimated imprecisely. Using the sine aggregatio approach

dramatically improves the precision of the employment effect estimate. The K = 0

CI length is 40 percent of the analogue aggregate-based CI length. The corresponding

value for K = 1 equals 58 percent.

Tables 2 and 3 illustrate both the potential precision gains from using disaggregate

with parameter restrictions and a way to examine robustness of results to modest

relaxations of such restrictions. Relative to aggregate series estimates, CI length is

drastically lower with a K = 0 fully common parameter restriction. Importantly,

these tables also illustrate that much of these gains in precision can still occur for at

least some levels of relaxation in the restrictions, for K = 1 or more. We anticipate

that comparing results for a variety of K values will allow researchers to easily assess

the robustness of their results to parameter restrictions.

5 Conclusion

We develop a new method to use disaggregate data to answer questions about how

a macroeconomy responds to macro treatments.

In this section, we review some of the requirements necessary to usefully apply

the method and describe when the method is likely to achieve significant efficiency

gains.

First, a researcher needs time varying instrument(s). It also requires adequately

long disaggregate (e.g., individual, region, sector) time series for a sufficiently large
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number of disaggregate groups that together are representative of all or nearly all of

an entire macroeconomy. Our approach relies on moment conditions that are satisfied

along the time dimension. Finally, to achieve efficiency gains, some commonality of

the parametric response across groups is needed, although our approach allows for

some departure from identical regional responses.

The potential efficiency gains from using our method dis-aggregated data relative

to aggregates will depend in large part on two things. First, the extent of common

parameters across groups, the more commonality the greater the scope for efficiency

improvement as more groups’ series will be informative about common parameters.

Second, the potential for efficiency gains will depend on the variance-covariance

structure across the elements of the vector in our moment condition (6), the collection

of (ztε
δ
i,t+δ) across groups i = 1, . . . , N . We use efficient GMM weighting, with an

estimate of the inverse of the long-run variance-covariance matrix of our sample

moment conditions. Thus, e.g., if there are groups with low variance moments, they

will be weighted heavily in estimation with potentially big efficiency gains. The

correlations across sample moments of course also matter with gains from multiple

moments perhaps being largely undone in cases where moments are highly correleated

across groups.
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Appendix for “The Sine Aggregatio Approach to
Applied Macro”

A Sample of Applicable Data Sets

Table 4 provides a list of data sets in which each is disaggregated along at least one

dimension (e.g, industry, geography, type of good, function) from which an aggregate

variable of interest to macroeconomists is constructed. Each data set consists of a

panel. This is a necessary condition for our method to be applied since we rely on

time series averages for estimation and inference.
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Table 4: Examples of publicly available, U.S. panel data sets suitable for the sine
aggregatio approach

Data set Variable(s)
Disaggregation level/type

Quarterly Census of
Employment and Wages

Employment, wages, num-
ber of establishments

State, county, MSA, indus-
try

Local Area Unemployment
Statistics

Labor force participation,
unemployment

State, metropolitan area

BEA Personal Income Earnings, personal income,
transfers

State

Consumer Price Index Consumer prices Region, type of good

Personal Income and Outlays Personal consumption ex-
penditure

Type of good

PCE Price Index Consumer prices Type of good

National Income and Product
Accounts

Income, compensation, em-
ployment, production

Industry

National Income and Product
Accounts

Government spending Function

Industrial Production and
Capacity Utilization

Production index, capacity
utilization index

Market group, major indus-
try group

IRS Corporate Tax Data Taxes, credits, payments,
net income, income subject
to tax

Industry, size of business
receipts

IRS Individual Income Tax Adjusted gross income, ex-
emptions, deductions, tax
items

Income percentile, state,
county, zip code

BEA Industry Accounts Value of material inputs by
type

Industry

Notes: Each data set contains one or more variables presented at a disaggregate level for
which an aggregate variable of interest is constructed and used in macroeconomic research.
BEA=Bureau of Economic Analysis, IRS=Internal Revenue Service, PCE=Personal Con-
sumption Expenditure.
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B Alternative Departures from a Common Effect

In this section, we consider alternative departures from the common coefficient (i.e.,

K = 0) approach. We suppose that among the nine groups, there are three clusters

and each cluster consists of three groups. Within a cluster, the coefficient-of-interest

is identical. We impose no cross-cluster restrictions on the coefficient.

Next, we construct clusters according to one of two algorithms. The first builds

all possible combinations of groupings into clusters (which we refer to as “all combi-

nations”). This generates a total of 280 possible restrictions.

Table 5: Employment effect of a 20 percent increase in the real price of oil, 24 month
horizon: sine aggregatio method using clustered departure from the common effect
assumption

Estimation Method Low CI High CI Midpt. CI rel length (%) Num models

Aggregated data -3.85 0.32 -1.77
Sine aggregatio (K=0) -1.71 0.13 -0.79 44.19 1
3 clusters (all combinations) -3.27 0.97 -1.15 84.04 280
3 clusters (restricted) -2.56 0.82 -0.87 66.99 6

Notes: Dependent variable=24 month change in log employment. 90 percent CIs reported.

“(all combinations)” row reports our union CI taking the union over mixture CIs from all

possible combinations of 3 member-3 cluster partitions of the 9 groups. “(restricted)” row

restricts attention to clusters constructed by grouping according to economic variables.

The second algorithm constructs clusters using some measure of economic close-

ness that potentially relate to differential treatment effects of oil prices on group

employment. We use six different state-level variables: the employment share of

manufacturing, the output share from the oil and gas extraction industry, the output

share of the motor vehicle industry, population, income per capita, and oil usage.16

For each of the six, we construct clusters using the variable’s terciles.

Each of the six variables potentially motivates a common parameter restriction.

For example, consider oil usage. It is plausible that oil-intensive clusters experience

16Oil usage is measured as British Thermal Units of Petroleum per capita in 1995.
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a greater effect on employment of an oil supply disturbance than relatively less oil-

intensive clusters. Table 5 presents the results using the clustering assumptions.

The first two rows restate the 24-month responses using the aggregated-data and

the common coefficient sine aggregatio approaches, respectively. The row labelled

“3 clusters (all combinations)” reports the union of the confidence intervals for the

280 models case, i.e., all possible three-member clusterings of the nine groups. The

midpoint of union is -1.15, which is very close to the common coefficient value. Note

that the confidence interval length is slightly smaller than the aggregated data case..

The confidence interval of the “all combinations” case is 84 percent of the confidence

interval from the standard, aggregated data method.

The final row of Table 5, labelled “3 clusters (restricted)”, uses 6 different clus-

terings, in which each is determined by the group-level terciles of one of the variables

listed above. In this case, there is a substantial improvement of the precision relative

to the aggregated-data method. The confidence interval shrinks by about one-third.

This final row demonstrates how employing ex ante information to restrict the set of

potential departures from the common coefficient assumption increases the improve-

ment achieved by the sine aggregatio method.

C The Method Expressed Step-by-Step

The following presents a cookbook recipie for the method described in this paper.

1. Select a time series for the aggregate treatment of interest of length T and, if

necessary, a valid instrument to ensure that an orthogonality condition will be

satisfied.

2. Select an aggregate outcome of interest among those for which the disaggregate

panel is available. If the cross-sectional dimension is too large relative to T ,

some partial cross-sectional aggregation (i.e., collapsing to the group level)

may be required. This is because the method relies on a reliable estimate of

the second-moment matrix, which will be used to construct the efficient GMM

weighting matrix. Let the number of resulting groups equal N .
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3. Construct an estimation equation with the group-level analog of the aggre-

gate outcome as the dependent variable. The group-level outcome should be

expressed as a function of the aggregate treatment. The equation must “aggre-

gate” such that, if one sums the equation along the cross-sectional dimension,

the resulting coefficient on the treatment can be interpreted as an aggregate

causal effect.

4. As part of Step 3, specify an equation that parameterizes some departure from

a common coefficient assumption across the N groups. For example, allow

N −K groups to have common slopes and the remaining K to have different

slopes. For another example, allow there to be alternative partitions of the N

groups into M clusters. Let Q equal the number of alternative specifications

implied by the particular departure from common coefficients.

5. Estimate the equation from Step 3 for the Q alternative models and record the

associated confidence interval around the aggregate treatment effect implied

by the corresponding group-level parameter estimates. Remove any confidence

interval associated that a rejection of that model’s overidentification restriction.

6. The union of confidence intervals from the remaining set of models provides a

confidence interval for the effect of the aggregate treatment on the aggregate

outcome.
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